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Abstract: Regioselective mono and dis-chioromethylation of cavitands have been
prepared as an intermediate of a new cavitand derivative.  Mono- and bis-aza-15-
crown-5 modified cavitands (4 and §, respectively) have been obtained from mono-
and bis-chloromethylated cavitands, respectively.  The metal binding properties of
native cavitand (1), 4 and § were studied by 'H-NMR and UV-Vis spectroscopy.
© 1999 Elsevier Science Ltd. All rights reserved.

The synthesis of cavitand has been reported by Cram and co-workers[1].  For last two decades,
many analogues of cavitand have been prepared to investigate their host-guest complexation properties{2].
Tetra-chloromethylated cavitand, which was reported by Cram et al, was a good intermediate for synthesis
of a new derivative of cavitand because it is easy to introduce functional groups on a upper rim of the
cavitand{3].  To our best knowledge, selective chloromethylation of cavitand has not been reported yet.
In this communication, we report a synthesis of mono and bis-chloromethyl cavitands (2 and 3,
respectively) and mono- and bis-aza-15-crown-5 modified cavitands (4 and 5), which were prepared from
2 and 3, respectively.  Compounds 2 and 3 were synthesized from cavitand using excess amounts of
chloromethyl methyl ether in the presence of ZnCL,[4,5]. Compound 2 was converted into 3 with a
longer reaction time or with using further addition of ZnCl,.  Particularly the regioselectivity observed in
the bis-chloromethylation is noteworthy in which 1,3-bis-chloromethylated derivative is the major product,
and no 1,2-isomer is detected. ~ The 'H-NMR spectrum of 2 shows signals at 4.48 (d, 2H, J=7.2Hz) and
4.58 ppm (d, 2H, J=7.2Hz) attributed to the inner and 5.74 (d, 2H, J=7.2Hz), 5.87 (d, 2H, J=7.2Hz)
ppm attributed to the outer methylene protons, respectively. It suggests that chloromethyl group affects
the chemical shift of methylene protons.  On the other hand, in the 'H-NMR spectrum of bis-
chloromethylated derivative (3), a signal attributed to inner and outer methylene protons appear at 4.61 (d,
4H, J=7.4Hz) and 5.87 ppm (d, 4H, J=7.4Hz), respectively. It means that each inner or outer proton is
equivalent. It is suggested that the chloromethyl groups were introduced at 1 and 3 position of the
cavitand as shown in Figure 1.  Mono- and bis-aza-15-crown-5 appended cavitands (4 and §) were
prepared from 2 and 3 with aza-15-crown-5[4,5] to investigate their metal binding properties.  To clarify
the complexation characters of 4 and 5 with metal in aprotic solvent, '"H-NMR and UV-Vis spectroscopy
studies have been carried out.  Figure 2 show the '"H-NMR spectra of the free ligand and of its sodium
thiocyanate complex of 4. By adding variable amounts of NaSCN in CD,0D to a CDClI, solution of the
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ligand the 'H-NMR spectrum of the latter changes.  The variation in chemical shift is noted by outer
methylene protons appeared at 5.84 ppm which moves 0.12 ppm downfield and of its signal is changed as
br. doublet into as a clear doublet.

aza-15-cromm-5

aza-15-crown-5

Fig.1 Preparations of 2, 3, 4, and 8.
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Fig. 2 'H-NMR spectra of the free and complexed form of ligand 4 in CDCl3 at 25 °C. : (a) R=[NaSCNV/[4]=0; (b) R=0.5; (¢}
R=1; where [4}=1.33x10>M in CDCl3.  Aliquots from a 1.0 M solution of NaSCN in CD30D were added directly to a CDCl3
sotution of 4in a NMR tube.

The signal attributed to crown ether methylene protons appeared at 3.66 ppm changes splitted two signals at
3.77and 3.68 ppm.  The signals attributed to aromatic-protons at 6.47, 6.48 and 7.26 ppm were small
down shifted to 6.49, 6.52 and 7.28 ppm, respectively.  These behaviors are due to the contribution of
the complexed cation, which induces downfield shifts on protons adjacent to the binding sites, and also to
conformation changes. The '"H-NMR titration expetiment clearly indicates a 1:1 stoichiometry for the
NaSCN complex with ligand (4), because all signals remain unchanged after the ratio of the salt/ligand ratio
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has reached the unity value.  The stoichiometry for the NaSCN complex with ligand (8) is clarified as a
1:2 host-guest formation by the 'H-NMR titration experiment.  On the other hand, the spectrum of native
cavitand (1) was not absolutely changed by adding of NaSCN.

Figure 3 shows the absorption spectra of 1 and 4, alone or in the presence of NaSCN.
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Fig. 3 Absorption spectra of 1 (a) and 4 (b) (1x10™ My in chioroform at various concentration of
NaSCN in MeOH (1:0, 2:2.0x 105, 3:4.0x10%, 4:6.0x10°3, 5:1.2x104, 6:2.0x10%, 7:2.9x10*,

8:4.0x10 M).

Addition of variable amounts of NaSCN in MeOH to a 10 M CHCI, solution causes a bathochromic shift
of 1 and 4. The absorption spectra change of 1 between without or with NaSCN was observed as
almost same as for4. It means that cavitand (1) also can make metal complex in aprotic solvent. It is
supposed that metal binding affinity of 1 is weaker than that of 4, because the 'H-NMR change with
sodium cation was not observed in contrast to that of clear changes for 4.  The binding constants (K /
mol™ dm’) of 1 and 4 were obtained by the analysis of the absorbance variations using Eq. 1[6].

K A - Ax 1

= Y Eq.
(Ax—Ac) Cg—Ch‘-—'—'—'
Ah — Ac

Here, A is absorbance at 276 nm, Ax for sample, An for ligand alone, Ac for complex, Ch is total ligand
concentration, and Cg is total NaSCN concentration.  When metal cation is in large excess, we used Eq.
2 which derives from Eq. 1.
Ah - Ax
Ce

When metal cation is not in large excess, a curve-fitting method was used as alternative method.  Figure 4
shows the curve-fitting datafor 1 and 4.  The binding constants obtained are 960 and 3400 for 1 and 4,
respectively.  This indicates that 4 can detect Na cation with almost three times than that of 1.  These
results suggest that aza-15-crown-5 appended moiety of 4 works as an arm to catch with metal cation and

= KAx - KAc Eq. 2

introduce it into the cavity of 4 as depicted in Scheme 1.  In conclusion, mono- and bis-aza-15-crown-5
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modified cavitands are made to investigate their metal binding properties in CHCL, solution, in which aza-
crown moieties of these compounds work to elevate a metal binding ability.
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Fig. 4 The plot of absorbance (276 nm) of 1 (a) and 4 (b ) as a function of NaSCN concentration.

M : metal catlons
Scheme 1 Induced-fit type complexation for inclusion of metal cations in the cavity of 4.
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